
 1

Verification and Validation of Air Traffic Systems:
Tactical Separation Assurance

David Bushnell, Dimitra Giannakopoulou, Peter Mehlitz, Russ Paielli, Corina Păsăreanu (currently alphabetical – discuss)
NASA Ames Research Center
Moffett Field, CA 94035, USA

{addresses}@nasa.gov

Abstract—The expected future increase in air traffic
requires the development of innovative algorithms and
software systems that will automate several functions
currently performed by controllers. Extensive verification
and validation will be central to ensuring the correct
operation of these safety critical systems. Separation
assurance, for example, is concerned with maintaining a
safe distance between any two aircrafts. It is a complex,
real-time problem with many variables and uncertainties,
and failure could be disastrous. This paper reports on results
from a project at NASA Ames that studies the role of
validation and verification technologies in the development
of future air-traffic control software systems. It discusses
how advanced V&V technologies can contribute to the
production of robust software prototypes together with
measurable criteria that ensure that the industrial
implementations conform to them. It then presents early
results obtained from the application of test case generation
techniques to the TSAFE component for tactical separation
assurance.

TABLE OF CONTENTS?

1. INTRODUCTION
The traffic on U.S. commercial airlines is predicted to
increase by the equivalent of two major hub airports each
year through 2020. NextGen (Next Generation Air
Transportation System) is a NASA research program that
addresses this increasing load on the air traffic control
system through innovative algorithms and software systems.
The seminal work produced by this program should ideally
be in the form of reference artifacts that can be adopted by
industry. Software verification and validation will be critical
to this effort.

This paper discusses a joint project between NextGen and
Robust Software Engineering (RSE) groups at NASA Ames
that studies the role of validation and verification
technologies in the development of future air-traffic control
software systems. More specifically, the project aims at the
development of techniques and processes that 1) ensure the
production of robust software prototypes, and 2) provide
measurable criteria for checking (automatically) the
conformance of industrial implementations to these
prototypes.

We will develop techniques that are applicable to several
classes of air-traffic control software, and therefore plan on
studying several such systems. However, we have focused
our initial efforts on testing for the TSAFE (Tactical
Separation Assisted Flight Environment) NextGen
component. TSAFE is the part of NextGen which seeks to
predict and resolve loss of separation in the 30 second to 3
minute time horizon.

Our study of the TSAFE component started by applying off-
the-shelf tools to measure test coverage achieved with
existing tests applied to TSAFE. The purpose of this step
was to assess the complexity of generating appropriate tests
for this type of system. The results made it clear that
automated support would be crucial in generating tests that
would ensure that the component has been tested enough, as
well as meaningful regression tests that can be used for
checking conformance of industrial implementations to this
prototype.

We will discuss our preliminary experiments with automatic
test case generation techniques for modules of the TSAFE
code. These techniques are implemented in Symbolic
Pathfinder (SP), an extension of the Java Pathfinder (JPF)
model checking tool. SP adds symbolic execution
capabilities to JPF's well developed state space exploration
techniques. Through advanced constraint solving modules,
SP is able to automatically generate input values that will
ensure the traversal of targeted paths in the program. We
will also review the challenges that this particular
application poses to SP due to its complex numerical
computations.

The remainder of the paper is organized as follows. Section
2 is an overview of the TSAFE system, and the verification
challenges that it presents. Section 3 discusses the role that
we propose for V&V techniques in the development of
NextGen algorithms and software systems. It presents
symbolic execution as a means of automatically generating
high quality software tests, and reviews the Symbolic
Pathfinder extension to the JPF. Section 4 describes the
application of SPF to TSAFE, our preliminary results and
challenges that we have faced. Section 5 summarizes related
work, and Section 6 concludes the paper and presents plans
for future work.

2. TSAFE
Airspace capacity is the number of flights that can fly safely
in a given volume of airspace. In the current air traffic
system, that capacity is limited to approximately 15 flights
per sector (or controller) due to cognitive limitations of air
traffic controllers using radar displays and voice
communication with pilots. The large potential increase in
air traffic in future decades is expected to require
automation of the separation assurance functions that are
currently performed by controllers. Separation assurance is
a complex, real-time problem with many variables and
uncertainties, and failure could be disastrous. The challenge
is to develop an automated system that can keep the
probability of collision acceptably low, despite the
complexity and unpredictability of the traffic patterns, even
as traffic doubles or triples.

NASA Ames is developing the Advanced Airspace Concept
(AAC) \cite{[AAC],AAC2} to meet that challenge. AAC
comprises two stages of separation assurance, plus standard
collision avoidance, which constitutes a third stage. The first
stage is a strategic auto-resolver \cite{AutoRes} that
attempts to detect and resolve conflicts up to approximately
20 minutes in advance. The second stage is a simpler system
called the Tactical Separation-Assured Flight Environment
(TSAFE), which is intended to backup the strategic auto-
resolver and handle any conflicts left undetected or
unresolved with loss of separation (LoS) predicted to occur
within approximately two minutes. If TSAFE fails to
resolve a conflict, the Traffic Alert and Collision Avoidance
System (TCAS) \cite{TCAS} is available on most
commercial aircraft to prevent a collision using vertical
maneuvers.

Because automated conflict detection and resolution are
considered safety critical, TSAFE is intentionally designed
to be as simple as possible, while still capable of resolving
conflicts with high reliability. Thus, TSAFE generates
relatively simple maneuvers consisting of altitude, heading,
or speed changes, which could be used as controller
advisories, but are intended ultimately to be automatically
uplinked to the flight deck. For simplicity, TSAFE does not
attempt to return the maneuvered flights back to their
planned routes after the conflict passes. Because the
conflicts are imminent, however, maneuver delays and flight
dynamics must be accounted for. TSAFE must also
guarantee that conflicts are resolved without creating new
conflicts with nearby traffic. In addition, TSAFE must be
designed to interact safely with TCAS.

In addition to the far-term objective of tactical conflict
resolution, TSAFE has also been developed and tested for a
near-term application as a tactical conflict alerting aid for
controllers \cite{TSAFE,TSAFE2}. The objective is to
eventually replace Conflict Alert, the legacy system for
alerting controllers to imminent conflicts in the US. Like
Conflict Alert, TSAFE uses constant-velocity (``dead-
reckoning'') state projections, but unlike Conflict Alert, it

also uses intent information in the form of the flightplan
route and the assigned altitude. TSAFE has been tested
extensively with actual air traffic data, including archived
tracking data for 100 operational errors (losses of separation
officially attributed to controller error). TSAFE provided
timely alerts more consistently than Conflict Alert. TSAFE
was also found to produce substantially fewer false alerts
than Conflict Alert.

The tests of TSAFE using archived operational errors and
other traffic scenarios go a long way toward establishing
credibility in an operational environment, but more testing is
needed to guarantee the reliability of TSAFE in actual
operation. In particular, traffic scenarios and encounter
geometries need to be generated to test any or all ``corner''
cases that could arise in practice. [more?]

TSAFE Interface

The basic inputs and outputs of TSAFE are shown in Fig.
\ref{fig:TSAFE-IO}. The primary inputs are radar tracking
data and barometric altitude reports from each flight via the
standard Mode C datalink. The assigned altitude of each
flight is also available to TSAFE via altitude amendments
entered by the controller, and the flightplan routes are
available through the route amendments entered by the
controller. The aircraft type and other basic information for
each flight are also provided to TSAFE through basic flight
registration. TSAFE can operate without aircraft type
information, but it's climb and descent predictions will not
be as accurate. Current wind data can also be provided, if
available. The output of the near-term version of TSAFE is
the predicted conflicts, whereas the output of the far-term
version with automated conflict resolution is the
recommended resolution maneuvers.

The inputs and outputs of TSAFE are provided by function
calls. For file replay, each line of text in the input file is a
data record that triggers a call to the corresponding input
function. The functions interfaces and data records are
specified in detail in the TSAFE interface control document
\cite{ICD}. The input function names and the corresponding

Figure 1: TSAFE Inputs and outputs

data record codes are shown in Table \ref{tbl:TSAFE}.
Each function call applies to one particular flight, which is
specified by the flight identification argument. All of the
arguments of the input functions are basic data types such as
integers, floating point numbers, and character strings.

Function Function Name Code

flight registration registerFlight FLT

route amendment amendRoute RTE

altitude amendment amendAltitude ALT

radar track update radarTrack TRK

flight deletion deleteFlight DEL

wind data update loadWindFile WND

Table 1: TSAFE input function names and corre-
sponding data record type codes

TSAFE Architecture

TSAFE is implemented as a single instance of a ``TSAFE''
class that is used to manage the entire process. The TSAFE
object contains a list of instances of the ``Flight'' class, one
for each actual flight being tracked. Each Flight object, in
turn, contains an instance of the ``State'' class and the
``Flightplan'' class, each of which will be explained shortly.
The TSAFE object has methods for predicting trajectories
and checking for conflicts. To account for uncertain pilot
intent, TSAFE generates both constant-velocity (state-
based) and flightplan-based trajectory predictions for each
flight, and it checks all combinations for conflicts.

The ``State'' class represents the dynamic state of a flight in
terms of a time-tagged position and velocity. The State class
provides a method for computing the ``dead-reckoning''
(constant-velocity) horizontal path and altitude predictions.
The predictions are stored as a series of points at regular,
synchronous intervals of time (default: 6 seconds). The state
class also contains many utility functions for various basic
tasks such as time projection and synchronization,
computation of current separation and predicted minimum
separation at constant velocity.

The ``Flightplan'' class represents the planned route and
performs computations associated with that route. It takes a
list of two-dimensional route waypoints and constructs a
nominal path with tangent turn arcs of a constant radius
based on a coordinated turn at a specified bank angle
(default: 20 degrees). The resulting route consists of an

alternating sequence of straight and turn segments, each
type represented as an instance of a small utility class. The
Flightplan class has a function that accepts the current state
(position and velocity) of the flight and constructs a
predicted trajectory that converges to the rounded path at a
specified convergence angle (default: 10 degrees). It also
has a function to compute the cross-track and course error of
a given state. Those errors are used to determine the
prediction look-ahead time of the state-based (constant-
velocity) and flightplan-based trajectories. The closer the
flight is following its flightplan, the longer is the prediction
time for the flightplan-based trajectory prediction and the
shorter is the state-based prediction.

The ``Flight'' class represents a single flight. Each Flight
object contains a State object and a Flightplan object. It uses
the State object to generate the constant-velocity
predictions, and it uses the Flightplan object to generate the
flightplan-based predictions. The Flightplan class also has a
method for checking for conflict between a pair of flights.
That method is called by the TSAFE object for each pair of
flights. The Flight class uses the ACmodels class to
compute predicted climb and descent rates in response to
altitude amendments entered by the controller.

To check for conflicts between a pair of flights, the Flight
class uses the ``PotentialTrajectories'' class. The
PotentialTrajectories class accepts a list of horizontal
trajectory predictions and a list of vertical predictions for
each flight. The lists currently consist of the constant-
velocity predictions and the flightplan-based predictions, but
other types of predicted trajectories could be added later if
necessary. The vertical predictions are reduced to an altitude
range at each point in predicted time and superimposed over
both of the horizontal trajectories. All four combinations of
trajectories are then checked for conflict. An trajectory
bounding procedure is used to eliminate the detailed
checking for conflicts if the two flights are far apart.

An experimental class that can optionally be used by each
Flight object is the ``TurnDetection'' class. If a flight is not
following its planned route, this class analyzes the tracking
history and attempts to detect the initiation of an unplanned
turn. An unplanned turn is a turn for which the controller
enters no data into the Host computer. Such turns occur in
holding patterns, for example. They also occur when a flight
is turned to resolve a conflict, or when a flight is turned to
get it back on its planned route after a conflict has been
resolved. When an unplanned turn is detected, a predicted
trajectory is constructed in which the turn continues for
some angle. The challenge here is to avoid false alerts due
to noise in the radar tracking data, which can occasionally
be severe. When improved surveillance methods become
available in the future, this class should be more effective
and produce fewer false alerts.

In the interest of brevity, several other utility classes will not
be discussed here. Also, the architecture for conflict
resolution will not be discussed.

3. TEST CASE GENERATION
Test Case Generation for NextGen

(add picture from slides and extend this text)

1. Provide synthetic test data and test oracles that will
thoroughly and automatically verify TSAFE,

2. Provide support for extended notions of coverage, and

3. Reduce the size of the test suite so that it retains the
necessary coverage while focusing on the most
interesting and meaningful tests.

For test case generation we use Symbolic PathFinder
\cite{SPF}, a recent extension to JPF that combines
symbolic execution and constraint solving for automated
test case generation. Symbolic PathFinder implements a
symbolic execution framework for Java byte-code. It can
handle mixed integer and real inputs, as well as multi-
threading and input pre-conditions. We describe symbolic
execution and the Symbolic PathFinder tool in more detail
below.

Symbolic Execution

Symbolic execution
\cite{King76SymbolicExecutionProgramTesting} is a form
of program analysis that uses symbolic values
instead of actual data as inputs and symbolic expressions to
represent the values of program variables. As a result, the
outputs computed by a program are expressed as a function
of the symbolic inputs. The state of a symbolically executed
program includes the (symbolic) values of program
variables, a path condition (PC), and a program counter.
The path condition is a boolean formula over the symbolic
inputs, encoding the constraints which the inputs must
satisfy in order for an execution to follow the particular
associated path. These conditions can be solved (using off-
the-shelf constraint solvers) to generate test cases (test input
and expected output pairs) guaranteed to exercise
the analyzed code. The paths followed during the symbolic
execution of a program are characterized by a symbolic
execution tree.

\begin{figure}
\begin{verbatim}
[1] if ((pressure < pressure_min) ||
[2] (pressure > pressure_max)) {
[3] ... /* abort */
 } else {
[4] ... /* continue */
 }
\end{verbatim}
\caption{Example for symbolic execution.}
\label{fig:symexe}
\end{figure}

To illustrate the difference between concrete and symbolic
execution, consider the example in
Figure~\ref{fig:symexe}. The code checks if the value of
pressure
(input variable $pressure$) is within min and max allowed
values (input variables $pressure_min$ and
$pressure_max$). In concrete execution (e.g. testing) one
executes the code on given concrete inputs. For example, for
$pressure=460$, $pressure_min=640$,
$pressure_max=960$, only one path through the code will
be executed, corresponding to the first disjunct in the {\tt if}
statement being true. In contrast, symbolic execution starts
with symbolic input values ($pressure=Sym1$,
$pressure_min = MIN$ and $pressure_max=MAX$).
Symbolic execution will analyze three paths through the
program and it will generate three path conditions,
according to different possibilities in the code:

\noindent $PC_1: Sym_1 < MIN$,\\
$PC_2: Sym_1 > MAX$,\\
$PC_3: Sym_1 \geq MIN \wedge Sym_2 \leq MAX$

Concrete values for the inputs that satisfy ("solve") the
path conditions are then found with the help of a constraint
solver and those solutions are used as concrete test inputs
that are guaranteed to give full path coverage for this code.

Symbolic PathFinder

Symbolic PathFinder implements a non-standard interpreter
for byte-codes on top of JPF. The symbolic information is
stored in attributes associated with the program data and
it is propagated on demand, during symbolic execution. The
analysis engine of JPF is used to systematically generate
and explore the symbolic execution tree of the
program. JPF is also used to systematically analyze thread
interleavings and any other forms of non-determinism that
might be present in the code; furthermore JPF is used to
check properties of the code during symbolic execution.
Off-the-shelf constraint solvers/decision procedures {\tt
choco} and {\tt IASolver} \cite{DP} are used to solve
mixed integer and real constraints. We handle loops by
putting a bound on the model-checker search depth and/or
on the number of constraints in the path conditions.

4. CASE STUDY: APPLICATION OF TEST
GENERATION/SPF TO TSAFE

As was described in Section 1, the prototype for the TSAFE
algorithms has been written in an object-oriented style with
the TSAFE class managing the calculations and various
other classes implementing key parts of the algorithms.

The TSAFE prototype is written in the Python programming
language. Python is a widely used scripting language that
makes prototyping quick and easy.

During its development, TSAFE has been tested with data
derived from real air traffic control data. Being derived
from real data, the test data has the virtue of accurately
depicting real aircraft operations. However, because loss of
separation (LOS) occurs very rarely in practice, it only tests
a limited number of LOS scenarios and limited parts of the
code.

We verified this by using a standard off-the-shelf Python
coverage tool, coverage.py [PCC], to measure actual code
coverage under the real-data tests. coverage.py, like most
commonly available code coverage tools, measures only
statement coverage. It does not compute more sophisticated
coverage statistics such as MC/DC coverage or path
coverage.

The results are shown in Table 4.1. The code coverage from
the tests derived from the real data ranged from poor to
good. In one case, the TrackFilter class, 99% of the
statements were executed and in several other cases, more
than 85% coverage was attained. But in many classes the
coverage was spotty at best.

Table 4.1 Code Coverage for Real Test Data

Class Statements Executed Coverage

ACmodels 189 163 86%

Flight 465 413 88%

FlightRes 197 20 10%

Flightplan 332 220 66%

RingBuffer 50 26 52%

State 255 135 52%

TSAFE 103 80 77%

TSAFEreplay 228 166 72%

TSAFEres 127 20 15%

TrackFilter 115 114 99%

Trajectory 351 308 87%

Turnlogic 204 17 8%

Since the prototype is still under development, this was to
be expected for some of the classes. (There is newly written
code that has not yet been tied in to the rest of the system.)
But even allowing for this, it is clear that more extensive
test suites are needed. We therefore applied SPF's model

checking and symbolic execution capabilities to the TSAFE
code.

Since SPF is a model checker for Java bytecode, the Python
code was first translated to Java. This process was
straightforward -- since the Python code was well
structured, it was possible to do a simple, almost mechanical
translation. While doing the translation, we were careful to
preserve the logical structure of the original code so that
tests generated from the Java code would be meaningful to
the Python code.

Even though the TSAFE prototype is well structured, it is
still a complex program: it necessarily uses many complex
data types, has many loops and complex logic, and uses
floating point arithmetic extensively. All of these present
challenges to model checkers.

In our initial investigations, we have therefore taken a
bottom-up approach, applying SPF to the lowest level
routines. This allows us to concentrate our initial work on
addressing the issues of model checking floating point code
and complex data structures.

Once the SPF extensions for model checking and symbolic
execution of floating point code described in section 3 were
added, we applied SPF to the low level methods
aircraft_turn_status in the class TurnLogic and currentLOS
in the class “Flight”. These methods were described in
Section 1. Recall that aircraft_turn_status determines
whether an aircraft should be turning left, right, or going
straight. currentLOS determines whether two aircraft have a
loss of separation.

These methods were chosen because (1) they used non-
trivial floating point operations, (2) they contained
significant program logic (for example, multiple nested if
statements), and (3) their behavior depended on both the
methods' input parameters and their objects' internal state.

The methods required some modification before they could
be run under SPF. In the case of aircraft_turn_status, the
original method returned a string as its result and depended
on a string instance variable. Since SPF does not yet handle
strings, we converted these parameters and variables to
integers. This worked well because the strings only
represented three distinct values, LEFT, RIGHT, and
STRAIGHT. Some of the code from this method is shown
in Figure 4.1.

Figure 4.1: aircraft_turn_status code

SPF generated approximately 350 test cases for
aircraft_turn_status. These tests will exercise all paths
though the method. If a less stringent coverage metric is
required (e.g. statement coverage or branch coverage), then
the run could be tuned and would produce fewer test cases.
Some of the test cases generated by SPF are shown in Table
4.2. These 350+ test cases took about two minutes to
generate.

Test
Case

p0 p1 p2 turnStatus Return
Value

1 -5008.0 -5006.5 don't
care

Straight Left

2 -5016.0 -13.0 -5006.5 Straight Left

3 -5016.0 -13.0 -13.0 Straight Straight

4 -7508.0 -13.0 4971.0 Straight Straight

 . . .

347 -5005.0 4995.0 don't
care

Left Left

348 -10.0 4995.0 don't
care

Left Straight

349 -5.0 4995.0 don't
care

Left Straight

350 0.0 4995.0 don't
care

Left Straight

351 5000.0 4995.0 don't
care

Left Straight

The method currentLOS required somewhat more extensive
changes, but this time the changes were required because of
limitations in the constraint solver. (Recall that any given

constraint solver over real numbers will have limitations
because the general constraint solving problem for reals is
undecidable.) In our case the constraint solver cannot handle
constraints involving square roots.

currentLOS uses square roots because it must compute the
distance between two points. However, the method only
uses that distance to do comparisons with other numbers.
So the square root can be eliminated by using the square of
the distance in place of the distance.

Once the changes were made, we were able to run SPF on
currentLOS and produce our suite of test cases for all paths
through the code. However, the logic in currentLOS is fairly
complex and requiring complete coverage of all possible
paths produces well over one hundred megabytes of test
cases.

The results of automatic test generation for the currentLOS
method illustrate the point that full path coverage is often
not a practical requirement for testing, even for systems
requiring high reliability. In practice, a less stringent form of
code coverage is required. As we scale up to larger and
more complex methods we will necessarily need to tune
SPF for less demanding coverage metrics.

5. RELATED WORK
Work on symbolic execution.

Nancy Levenson’s work on TSAFE.

Work by Tevfik Bultan and Others on TSAFE.

Work focusing on algorithms by Langley partners.

6. CONCLUSIONS & FUTURE WORK

 _initial_turn_active = false;

 if (STRAIGHT == _turnStatus) {
 turn_status = _activate_ts(p0, p1, p2);
 _initial_turn_active = true;

 } else if (RIGHT == _turnStatus) {
 double phi_stop
 = _angle_to_stop_turn(_turnStatus, p1);

 if (p0 > bank_turn_crit_next)
 turn_status = RIGHT;

 else if (p0 > 0.0 && p01 > 40.0)
 ...

7. ACKNOWLEDGMENTS

REFERENCES
[AAC]

\bibitem{AAC} Erzberger, H.: ``The Automated Airspace
Concept,'' 4th USA/Europe Air Traffic Management
R\&D Seminar, Santa Fe, NM, USA, 3--7 Dec. 2001.

\bibitem{AAC2} Erzberger, H.; Paielli, R.A.: ``Concept for
Next Generation Air Traffic Control System,'' \emph{Air
Traffic Control Quarterly}, Vol. 10(4)(2002), pp 355-378.

\bibitem{AutoRes} Erzberger, H.: ``Automated Conflict
Resolution for Air Traffic Control,'' 25th International
Congress of the Aeronautical Sciences (ICAS), Hamburg,
Germany, 3--8 Sep. 2006.

\bibitem{TCAS} Introduction to TCAS II Version 7. Federal
Aviation Administration, Nov. 2000.

\bibitem{TSAFE} Paielli, R.A.; Erzberger, H.: ``Tactical
Conflict Detection Methods for Reducing Operational
Errors,'' \emph{Air Traffic Control Quarterly}, Vol.
13(1)(2005).

\bibitem{TSAFE2} Paielli, R.A.; Erzberger, H., Chiu, D., and
Heere, K.R: ``Tactical Conflict Alerting Aid for Air
Traffic Controllers,'' accepted for publication in the AIAA
\emph{Journal of Guidance, Control, and Dynamics},
2008.

\bibitem{ICD} Paielli, R.A.; ``TSAFE Interface Control
Document.''

\bibitem{BADA} Eurocontrol: \emph{User Manual for the
Base of Aircraft Data (BADA)}, Revision 3.6, EEC Note
No. 10/04, ACE-C-E2, Eurocontrol Experimental Centre,
July 2004.

BIOGRAPHY
Ed Bryan is a consultant in software
development methodology and technology.
He has developed and led development of
software at Bell Labs, RAND, Scientific
Data Systems, Xerox, Honeywell, and
Groupe Bull. He previously served as
Director of Honeywell and Groupe Bull’s
Los Angeles Development Center, where
the operating systems, databases,

compilers, and communications software for the CP-6
system on main-frame hardware were developed and
supported. He has held management positions at startups

International Meta Systems in 1987 and Acorn
Technologies in 1997. In the early 1960s he wrote the
operating system for JOSS II, one of the earliest timesharing
systems. He has a BSEE from Caltech and a master’s
certificate in communications from Bell Laboratorie

–

